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Abstract

We measure the tail dependence of international companies with respect to

foreign markets at the firm level using copulas. We observe that interdependence,

in and outside US, increases in crises while left tail dependence is always stronger

than right tail dependence with their difference widening in recessionary periods.

We then characterize the factors that account for the total panel variation of firm-

level tail dependence using the random forest regression framework. The World

Uncertainty Index, the R-square integration measure and coskewness with respect

to foreign markets are the most important determinants. Individual Ownership

variables such as the number of total or foreign investors dominate the remaining

firm-level characteristics in explaining tail dependence. When we categorize our

variables into groups, we find that Market, Ownership and Macro (Profitability)

variables matter the most in the US (non-US) sample.

Keywords: Firm-level tail dependence, Copulas, Determinants, Random forest

regression

1. Introduction

Systemic risk, and tail dependence in general, has received considerable atten-

tion in the literature in recent years especially after the disastrous events of the

Global Financial Crisis (GFC) of 2008. The GFC highlighted the importance of

understanding the interdependence of financial institutions and the potential for
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contagion across market sectors. For that reason, tail dependence and its deter-

minants has been studied on the country- (Nguyen and Lambe, 2021; Beine et al.,

2010), industry- (Chiu et al., 2015) and firm-level (De Jonghe, 2010; Weiß et al.,

2014; Laeven et al., 2016). This is especially true at the firm level where there are

stocks that are more sensitive to the extreme shocks of local or foreign markets

than others. It is therefore valuable for global investors to identify these stocks

and their characteristics in order to reduce their likelihood of experiencing large

losses. We contribute to the literature by measuring tail dependence at the firm

level for international companies and identify the characteristics that help explain

their tail dependence with foreign markets.

Even though the literature documenting tail dependence and extreme events at

the market level is not new (Longin and Solnik, 2001; Forbes and Rigobon, 2002;

Poon et al., 2004), there is a more recent strand that studies its determinants.

Beine et al. (2010) measure the impact of several bilateral characteristics of mar-

kets at both the left and right tail of the return distribution and find that their

impact is asymmetrical; financial liberalization increases only left tail comove-

ment while trade integration affects positively the whole distribution. Nguyen and

Lambe (2021) characterize both the direction (does a tail event in country i cause

a tail event in country j or the other way around?) and the determinants of tail

risk in bilateral pairs of markets thus categorizing countries into tail risk drivers

and receivers. They find that the size of the economy of the driver country is

the strongest determinant of the country pair connectedness with a positive effect,

followed by trade and capital linkages with the latter variables having a negative

effect. There is also evidence of tail risk drivers at the industry level such as Chiu

et al. (2015) who study the tail risk spillover from the financial to non-financial

sectors in the US and find that sectors with high net debt financing and lower

valuation and investment suffer the most in crisis periods. A more recent and sim-

ilar study is that of Nguyen et al. (2021) who explore tail risk spillovers between

US industries, highlighting the role of the customer-supply relations between the

industries.

The literature on firm-level tail dependence and its determinants is extensive

but it is concentrated on the banking and financial sector. For example, De Jonghe

(2010) constructs the tail beta of a European bank with respect to a regional
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banking index and then studies its relationship with the type of banks’ revenue

generating activities and other characteristics such as size and loan to assets. Weiß

et al. (2014) create an international dataset of banks and then assess which bank-

or country-specific characteristics contribute more to the local or global systemic

risk during financial crises. In a similar vein, Laeven et al. (2016) focus on the

cross-section of banks’ systemic risk during the Global Financial Crisis and find

that risk increases across size and decreases across the bank’s capital. Even when

tail dependence for non-financial firms is measured, it is studied only in an asset

pricing framework (Kelly and Jiang, 2014; Van Oordt and Zhou, 2016; Chabi-Yo

et al., 2018) with no emphasis on its determinants.

The firm-level evidence has been primarily focused on banks and financial in-

stitutions, and we add to the literature by focusing on additional issues. Our paper

addresses two fundamental questions: i) how does left tail dependence vary across

all publicly listed firms within or across countries and ii) which determinants can

explain its panel variation? Identifying the characteristics of the local stocks that

are more sensitive to extreme shocks of foreign markets is of fundamental impor-

tance for global investors who are averse to extreme losses. For example, Kelly and

Jiang (2014) and Chabi-Yo et al. (2018) find that the US stocks with higher left

tail dependence with respect to the US local market index have higher expected

returns and vice versa. Weigert (2016) show that this crash sensitivity premium

is not only a US phenomenon as it is present in 39 other countries besides the US.

This view is consistent with the “safety first” framework of Roy (1952) and Barro

(2006) in which investors require a premium to hold stocks that are more likely to

crash when the market portfolio crashes and highlights the importance of left tail

comovement in times of market turmoil.

We contribute to the existing literature of examining firm-level tail dependence

in three ways. First, we extend the literature to a comprehensive global sample of

publicly listed firms instead of limiting our sample to financial institutions only.

It is true that the health of the banking sector is of the highest priority for regu-

lators since banks have a fundamental role in the economy and their collapse have

negative rippling effects (Global Financial Crisis of 2008 or the recent collapse of

Sillicon Valley Bank and Credit Suisse of 2023) to real output. However, there

is still a strong incentive for investors to measure how extreme negative market
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returns affect all firms, regardless of whether they are financial or not, in order to

identify these sensitive stocks and minimize their portfolio tail risk.

Second, we characterize the factors that determine left tail dependence on a

US and non-US sample, separately and, as such, we shed light on whether the US

is different from other markets. After the firm-level calculation of tail dependence,

a natural question arises; what are the characteristics that drive left tail depen-

dence? This question extends the literature of the determinants of tail dependence

between countries, industries and financial firms. These previous studies on the

determinants employ standard regression techniques. In addition to regressions,

we augment our analysis with a machine learning approach, namely random for-

est regression, to rank the determinants of left tail dependence of firms over time

and countries. Our machine learning approach is capable of handling correlated

variables and non-linear effects. In conjunction with our representative dataset of

characteristics, random forest regression provides new insights on the factors that

matter the most in explaining the panel variation of tail dependence for US and

non-US companies.

Third, we focus on the tail dependence that exists between a stock and foreign

markets. Past studies measure the tail dependence of a firm with respect to a local

or global index. We deviate from that framework in the sense that we explore the

link between the tails of a firm and its corresponding foreign index in an effort

to provide insights on how firms can be adversely affected by shocks outside of

the firm’s country. This approach enables us to study how vulnerable firms are

to international conditions regardless of the state of the local market. In general,

local investors possess an informational advantage (Coval and Moskowitz, 2001)

about their respective country markets, and as such, they should be aware of the

tail dependence of the local stocks with the market. However, there is additional

value in learning how extreme negative shocks originating outside of their home

country propagate to the local equities. This is exactly the effect that what we try

to capture.

We measure the tail dependence between a publicly traded stock and the cor-

responding foreign market index using the methodology of Chabi-Yo et al. (2018)

for the period 2000-2019 for both the US and non-US sample. Specifically, we fit

the convex combination of the Clayton, Gaussian and Rotated Clayton copulas
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annually using daily returns from July of year t-1 to June of year t. This copula

combination is very flexible in modelling both left (Clayton), right (Rotated Clay-

ton) and no (Gaussian) tail dependence at the same time. Furthermore, it has the

advantage of using the information of the whole joint distribution instead of the

few observations found only in the tails. The corresponding foreign market index

is the Fama-French Developed Market index excluding the US and the US CRSP

value-weighted index for US and non-US stocks, respectively. First, we calculate

the copula-based left (LTD) and right (UTD) tail dependence coefficient and study

their properties. The LTD (UTD) coefficient computed from the fitted copulas is

the theoretical probability for a stock to experience the worst (best) return given

that the market index also experiences its worst (best) return.

In the second part of our analysis, we apply a random forest regression model

on LTD and a representative dataset of firm- and country-specific characteristics

in order to rank the determinants of LTD. Our dataset includes value, profitability,

investment, ownership and macroeconomic variables that have been shown to be

linked with tail dependence in the literature. We expand on this literature in later

sections. Our choice to work with random forest regression is not random; we opt

for it due to its ability to handle correlated variables and capture non-linear and

interaction effects between our regressors. Our primary objective is to establish

which determinants matter most in explaining firm-level tail dependence with the

world and, for that purpose, we rank variables in terms of their importance using

a variety of measures.

Our results can be summarized as follows. The time series equal- or value-

weighted mean of the LTD and UTD coefficients has the same pattern across

the US and non-US sample: left tail dependence is always higher than right tail

dependence and their difference widens in recessions. However, this widening is the

result of the increased levels of LTD rather than UTD with the latter being almost

constant throughout the years. This finding is in line with Forbes and Rigobon

(2002) who conclude that interdependence in the left tails is stronger during crises.

In the second part, we concentrate on the firm-level left tail dependence with

results being qualitatively similar for right tail dependence. We find that the World

Uncertainty Index of Ahir et al. (2022), the R-square measure of Pukthuanthong

and Roll (2009) and coskewness with respect to the corresponding foreign market

5



index are the most important determinants of LTD across samples and variable

importance measures. The World Uncertainty Index is a text-based measure of

uncertainty and captures the crisis periods in which the dependence structure

between a stock and markets change. It explains 6% and 4% of the panel variation

of left tail dependence in the US and outside of the US, respectively. The R-square

captures the dependence of a firm and foreign markets on the central part of their

joint distribution while coskewness describes the behaviour of the stock return

when the market return undergoes extreme deviations. The R-square explains

6% and 8% of the variation of LTD with coskewness explaining 6% and 6.5% in

the US and non-US sample. After the World Uncertainty Index, R-square and

coskewness, Ownership variables such as the number of institutional investors as

well as foreign and total institutional ownership matter the most in explaining left

tail dependence for both US and non-US stocks. Their variable importance ranges

between 2% and 3.5% in both samples. For comparison, size has a score of 3%

or 2.5% depending whether we examine US or non-US firms while the rest of the

variables have a negligible contribution with scores of 2% or less.

We further study variables as groups. Aggregation of individual variables allows

us to see which categories have the strongest relationship with firm tail dependence.

The variables are grouped into eight broad categories that include macroeconomic

(Macro), price and return related (Market), institutional ownership (Ownership),

value (Value), investment (Investment) and profitability (Profitability) variables.

We find that left tail dependence in the US sample is driven primarily by

Market, Ownership and Macro variables that are always the top 3 most important

groups by a large margin. When these groups are excluded, the explanatory power

of the model is reduced by 36%, 30% and 24%, respectively. Similarly, Market,

Ownership and Profitability groups drive left tail dependence in the non-US sample

with corresponding reductions in explanatory power of 40%, 24%, and 23%. The

Market group that includes the R-square, coskewness and firm size is the primary

driver of tail dependence followed by the Ownership group. The dominance of

ownership related firm-level characteristics highlights the increasingly important

role of institutions that trade internationally and affect prices. Only in the US,

macroeconomic variables such as the World Uncertainty Index and the World

Trade Uncertainty Index matter more than the other categories. However, the
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importance of the Macro group fades in the international sample of firms where

Profitability characteristics are emphasized.

Our results suggest that market conditions as well as the integration of a firm

with foreign markets and the activity of institutional investors are strongly as-

sociated with left-tail dependence. Even though the effect of the market condi-

tions is not new (Forbes and Rigobon, 2002), we document how the dependence

structure between local firms and foreign markets changes in crisis periods using

copulas. The fact that high integration levels are positively correlated with high

tail dependence levels, implies that the dependence in the central part of the joint

distribution extends naturally to the tails and specifically to the left tail. The

rise of institutional investors in global markets contributes to the increase of the

firm-level tail dependence highlighting once more their role in the landscape of the

modern financial world. Thus, through a fuller understanding of the determinants

of tail dependence between local stocks and foreign markets, investors can make

better ex-ante evaluations on their local equity portfolio’s sensitivity to foreign

shocks.

The paper is organized as follows. Section 2 discusses the modelling of tail

dependence. In Section 3 we motivate and describe the variables that we use in

our analysis. Section 4 describes the random forest regression algorithm and the

methods used to determine the most important drivers of tail dependence. Section

5.1 documents the characteristics of our measure of firm-level tail dependence

and its correlation with other variables. Section 5.2 contains the main empirical

findings where the determinants of tail dependence are presented. Finally we

discuss several robustness checks in Section 6 and we conclude in Section 7.

2. Measuring firm-level tail dependence

We measure the firm-level tail dependence of a local stock with a foreign mar-

ket index that proxies non-local markets using the methodology of Chabi-Yo et al.

(2018). It is a copula based method and it offers certain advantages in capturing

tail dependence over other parametric and non-parametric methods. First, it al-

lows for a flexible fit of combinations of basic parametric copulas to the bivariate

distribution of the stock and the foreign market index in which the left (lower)
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and right (upper) tail dependence coefficients can be explicitly derived and esti-

mated simultaneously. Second, the copula approach exploits the information from

the whole joint distribution instead of a small number of return observations in

the tail in comparison to non-parametric measures. This property allows us to

model dependence using daily returns in a span of a year and update the copula

parameters from one period to the next and thus capturing the dynamic nature of

dependence.

Generally, basic bivariate copulas, such as those in the Gaussian or

Archimedean family, do not allow for modelling both the left, right or no tail

dependence at the same time. Thus Chabi-Yo et al. (2018) chose to work with

convex combinations of copulas. In the same spirit, we use the combination of

the Clayton-Gaussian-Rotated Clayton copula. The (Rotated) Clayton copula ex-

hibits only (right) left tail dependence while the Gaussian copula exhibits no tail

dependence at all. We focus on a single copula combination to make our results

comparable across firms and years. The final form of the copula is

C(u, v; Θ) = w1CClayton(u, v; θ1)+w2CGaussian(u, v; θ2)+w3CrClayton(u, v; θ3) (2.1)

where Θ is the set of the basic copula parameters θ1, θ2, θ3. The weights have to

sum to 1, w1 + w2 + w3 = 1 and satisfy 0 ≤ w1, w2, w3 ≤ 1. C(u, v; θ) denotes

the cumulative density function (CDF) of a bivariate copula with parameters θ as

a function of the uniformly distributed random variables u, v. The parameters θ1

and θ3 control the left and right tail dependence that Clayton copulas exhibit while

θ2 is just the correlation coefficient for the fitted Gaussian copula. The weights,

w1, w2, w3, are representative of the dependence structure of the two random vari-

ables u, v. When w1 (w3) increases, u and v exhibit a dependence structure that is

left (right) tail dominant while an increase of w2 indicates a structure with weaker

tail dependence.

Throughout we consider X and Y to be two random variables that correspond

to the return of the local stock and the return of the respective foreign market index

with joint distribution FX,Y (x, y) and marginals FX(x), FY (y). The conditional

probabilities that capture the left and right tail dependence (hereafter LTD and

UTD, respectively) in the case of the basic parametric copulas such as the Gaussian
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and Clayton, can be simplified (see McNeil et al., 2015 for a proof) to the following

expressions only in terms of the bivariate copula C that models them:

LTD = lim
q→0+

Pr
(
X < F−1

X (q) | Y < F−1
Y (q)

)
= lim

q→0+

C(q, q)

q
(2.2)

UTD = lim
q→1−

Pr
(
X > F−1

X (q) | Y > F−1
Y (q)

)
= lim

q→1−

1− 2q − C(q, q)

1− q
(2.3)

The LTD and UTD can be calculated explicitly for the basic parametric cop-

ulas, and thus, once the parameters Θ of equation 2.1 are known, LTD and UTD

for the convex combination of Clayton-Gaussian-Rotated Clayton are given as:

LTD = w12
−1/θ1 and UTD = w32

−1/θ3 (2.4)

The LTD and UTD of equation 2.4 will be our copula-based measure of left

and right tail dependence, respectively. Note that the measured tail dependence is

controlled essentially by two parameters; the weights of w1 and w3 and the Clayton

copula parameters θ1 and θ3. This means that even though the weights assigned

to the copulas may be the same, the copula parameters may not be and vice versa.

The estimation of equation 2.1 is a two-fold procedure. First the marginal

distributions X, Y of the stock and foreign market index are estimated by their

empirical counterparts:

F̂X(x) =
1

n+ 1

n∑
k=1

IX(k ≤ x) and F̂Y (y) =
1

n+ 1

n∑
k=1

IY (k ≤ y) (2.5)

where n is the number of valid daily return observations in the period of July

of year t-1 to June of year t. We opt for the July-June scheme as per Fama

and French (2015) in order to map accounting variables to returns. We require

at least 150 non-missing observations of which no more than 80% of them are

zero (stale returns) for the estimation of LTD and UTD. For US stocks, we proxy

foreign markets with the Fama-French Developed Market index excluding the US.

For non-US stocks, we use the US CRSP value-weighted index on the basis that

US and Canada are the largest tail risk drivers in a global network of countries

according to Nguyen and Lambe (2021). Specifically, they construct a network of
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directional tail risk connectedness for a large number of countries and they find

that a tail event in the US and Canada leads to by far, the highest increase in the

probability of causing a tail event in all other countries in the network.

The estimated empirical quantiles of X, Y are, by definition, uniformly dis-

tributed in [0, 1] × [0, 1] and play the role of the random variables U, V used in

the definition of the copula combination in Equation 2.1. The realizations of U, V

constitute the pseudo-observations. These pseudo-observations are used in min-

imizing the logarithm of the maximum likelihood function in order to find the

parameters Θ = [w1, w2, w3, θ1, θ2, θ3]:

Θ̂ = argmax
Θ

n∑
i=1

log c(ui, vi; Θ) (2.6)

where c(ui, vi; Θ) is the corresponding copula density function of C(ui, vi; Θ) in

equation 2.1. The following constraints are used for the canonical maximum like-

lihood estimator (CMLE): w1 + w2 + w3 = 1, 0 ≤ w1, w2, w3 ≤ 1, 0 ≤ θ1, θ3 < ∞,

−1 ≤ θ2 ≤ 1.

3. Data

The vast literature on firm-level tail dependence of banks has established that

size plays an important role in explaining the variation of systemic risk. For

example, De Jonghe (2010) find that size is the largest driver of tail beta with a

positive effect. Similar conclusions are drawn from Laeven et al. (2016) who focus

on the events of GFC. What is more, De Jonghe (2010) notice that ordinary betas

and tail betas are highly correlated (in the 50% to 75% range) and conclude that

“banks with large exposure to movements in the banking index in normal economic

conditions will be more exposed to extreme movements as well”. For that reason,

we include the R-square of Pukthuanthong and Roll (2009) as a measure of the

dependence of a local stock with its foreign market index on the full support of the

joint distribution. We would also like to differentiate firm-specific tail risk from tail

dependence and to do so, we include Value-at-Risk (var90) and expected shortfall

(es90) at the 90% level. Then we group size, R-square, var90 and es90 along with

coskewness, illiquidity, volatility and momentum variables in the Market category.
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Weiß et al. (2014) examine the effect of both firm- and country-specific vari-

ables on the systemic risk of banks during crises and find that the only firm vari-

ables that are relevant are the profitability and book-to-market ratio. Similarly,

when Chiu et al. (2015) study the tail risk spillover from the financial sector to

all other sectors in the US economy, they conclude that low investment and value

industries are more likely to experience a price decline following a banking sector

crisis. Thus we include a variety of Profitability, Investment and Value variables

in our analysis since they might be also relevant for non-financial firms.

Next, we study the effect of institutional investors on the tail dependence of

local stocks with foreign markets. Recently, Cheng et al. (2023) showed that the

tail risk of firms is driven by the realized tail risk of their peer firms that are

commonly owned by blockholder institutions (a blockholder entity owns at least

5% of the firm). They provide evidence that this common institutional blockholder

(CIB) effect is one of the main channels through which tail risk propagates in the

network of firms: tail risk increases after initiations of peer connections via CIB.

This finding highlights the role of institutions on the relationship of firms at the

extreme tails of their joint distribution. In a similar vein, Faias and Ferreira (2017)

also establish that institutions act as agents of financial globalization by investing

worldwide and, as such, firms with higher institutional ownership exhibit higher

levels of comovement with global factors rather than local or industry factors. Even

though they examine the role of investors on the central part of the distribution, we

expect that such a link applies to the tails, too. In order to explore the multifaceted

role of institutional investors, we include Ownership variables in our models.

Finally, we include global and country-specific macroeconomic variables. It is

a stylized fact of the international finance literature that the dependence structure

of markets changes during crisis periods (Longin and Solnik, 2001; Forbes and

Rigobon, 2002). For that reason, we use the World Uncertainty Index (WUI)

and the World Trade Uncertainty Index (WTUI) of Ahir et al. (2022) which

are text based measures of global economic and trade uncertainty in order to

capture this effect. We also use the Trade and Market capitalization of all public

stocks over GDP for each country as measures of de jure economic openness and

financial development, respectively. These variables are shown to explain market

segmentation at the country level in Bekaert et al. (2011) while Beine et al. (2010)
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find that trade integration increases comovement across all quantiles of the joint

distribution of market returns.

We construct a representative list of firm characteristics sourced from the in-

tersection of Compustat, CRSP (Datastream) and FactSet for the US (non-US)

sample. We group variables into broad categories by adopting, altering and ex-

tending the group definition of Hou et al. (2020). The groups are Market, Invest-

ment, Profitability, Value, Ownership and Macro. Last, we gather daily return,

price and volume data for non-US stocks from Thomson Reuters Datastream. All

items are converted to US dollars and the list of all 36 variables along with their

categorization into groups can be found in Table 1.

[Insert Table 1 here]

We keep only public traded firms with common shares and we require that

these firms have no missing data for any of the variables used in our analysis. Our

final US sample includes 55,744 firm-year observations in total with 3710 firms

in June of year 2000 and 2137 firms in 2019. The final non-US sample includes

108,891 firm-years with 1029 international firms in June of year 2000 and 9147

firms in 2019.

4. Random forest regression

We wish to distinguish the relative importance of a comprehensive list of vari-

ables for our measured tail-dependence coefficients without imposing strong theo-

retical priors. For that reason, we employ the random forest regression (RFR) of

Breiman (2001) to determine which firm- or country-specific variables explain the

panel variation of firm-level tail dependence and then rank these variables. RFR

has been applied recently by Akbari et al. (2021) in the search for the drivers of

economic and financial integration.

Random forest regression offers several advantages over conventional linear re-

gression models. Its main advantage is its ability to handle highly correlated vari-

ables as well as non-linear interactions between independent and dependent vari-

ables. Multicollinearity biases the coefficients and t-statistics of the corresponding

linear models and thus the importance of variables can be masked. Akbari et al.
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(2021) acknowledge this issue and adopt the RFR to uncover the drivers of finan-

cial and economic integration at the country level. Furthermore, RFR is based on

a random sampling and averaging procedure which reduces the model’s sensitivity

to noise and outliers. Excluding part of the data and the explanatory variables

when building each tree also corrects implicitly for the over-fitting problem. For

those reasons, random forest regression is applied to our list of variables in order

to find the determinants of firm-level left tail dependence across the world. The

details of the RFR implementation are presented in Appendix A.

4.1. Variable importance

After we fit the random forest regression in the data, we rank variables using

two different measures of importance. The first is the permutation test of Breiman

(2001) in which we score variable j by the difference in prediction accuracy before

and after permuting j. The permutation process breaks the relation between vari-

able j and the true outcome y, and as such, larger values of the PT score imply

greater importance for variable j. This technique identifies the information content

of each input determinant relative to all other determinants. For that reason, the

sum of the permutation test scores of all variables is normalized to equal 1. The

second is the reduction in predictive R2 from setting all values of variable j to

zero, while holding the remaining model estimates fixed. The premise is that in

the absence of important variables, the fit of the model will be significantly worse.

Further details of these measures can be found in Appendix B.

5. Empirical findings

5.1. Firm-level tail dependence

Figures 1a and 1b plot the cross-sectional equal- and value-weighted mean of the

LTD and UTD for the US and non-US sample, respectively. The pattern is clear in

all cases; i) left tail dependence is always stronger than right tail dependence and

ii) the difference between the two becomes large in recessionary periods. The last

finding is consistent with the conclusion of Forbes and Rigobon (2002) that there

is increased interdependence during market crashes. The LTD measure captures

exactly that interdependence on the left tail of the joint distribution of a local

stock and its corresponding foreign market index. More specifically, the LTD
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values correspond to the conditional probability for a stock to experience its worst

return given that foreign markets experience their worst returns in a given year.

For example in the equal-weighted (value-weighted) case, LTD rises over the

value of 10% (15%) for the US sample in NBER classified recession periods with the

most notable example the Global Financial Crisis period when left tail dependence

reaches its peak at 16% (24%). This means that, in recessions, there is a probability

of 10% or higher that the average US stock will crash when foreign markets crash.

The same phenomenon is observed in the international sample in which the same

crash probability of non-US stocks rises above 8% or 10% at the end of recessions

depending on whether we equal- or value-weight it and peaks at 9% or 15% during

the GFC.

Generally, value-weighted values of LTD and UTD are higher than their cor-

responding equal-weighted values implying that larger firms are far more exposed

to foreign shocks than smaller firms. It is also important to note that the widen-

ing of the difference between LTD and UTD during crises arises from the stark

increase of LTD while right tail dependence is almost stable throughout the years.

Detailed summary statistics of both left and right tail dependence values can be

found in Table 2. A notable feature of the results is the 150-200% increase of the

LTD dispersion as measured by its cross-sectional standard deviation in recession-

ary periods compared to normal times. This increased dispersion suggests larger

heterogeneity for the exposure of firms to left tail events.

[Insert Table 2 here]

The calculation of the tail dependence parameter requires the fit of the Clayton-

Gaussian-Rotated Clayton copula combination and, as such, weights are assigned

to each copula, for a given stock and year. The weights are representative of

the dependence structure between the firm and the corresponding foreign market

index. When the weight of the Clayton (Rotated Clayton) copula increases, the

stock and the index exhibit a dependence structure that is left (right) tail dominant

with while an increase of the Gaussian weight indicates a structure of weaker tail

dependence. The weights convey additional information over the single copula

parameters: they indicate whether left, right or no tail dependence exist while the

copula parameters indicate the strength of that tail dependence. Together, they
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dictate the type and strength of tail dependence. For example, the correlation

of the copula weight w, and the corresponding parameter θ is -15% (-15%), 43%

(42%) and -14% (-10%) for the Clayton, Gaussian and Rotated Clayton in the

US (outside of the US), respectively. The relatively low correlations mean that

the weights and the single copula parameters are not the same and that their

information content is different.

Figures 2a and 2b plot the equal-weighted average weights (%) that are assigned

to the Clayton, Gaussian and Rotated Clayton copulas. We show that the average

weight of the Rotated Clayton that captures the right tail dependence is the same

across the years with a mean value of 25% for US and 20% for non-US. However,

the average weight assigned to the Gaussian copula that captures no dependence

dominates that of the Clayton copula in non-crisis periods. In other words, the

Clayton copula explains better the joint realizations of the stock returns and the

corresponding index than the Gaussian copula in crises. However, the explanatory

power of the Rotated Clayton remains the same on average, regardless of the state

of the economy. This is direct evidence on how the dependence structure changes

in crisis periods: from weak to strong left tail dependence.

Next we assess the persistence of the left tail dependence measure since only

the sensitivity of stocks to market crashes is relevant to crash averse investors.

Specifically, we are interested in whether the LTD of the previous period is related

to the LTD of the current period. In other words, if a firm exhibits high left tail

dependence with foreign markets in one period, should we expect it to behave the

same way in the next? Persistence is measured as the relative frequency at which a

stock is sorted into a LTD quintile portfolio in year t given that it was in portfolio

i in year t-1. The rank 1 portfolio contains the 20% stocks with the lowest LTD

while rank 5 contains those with the highest LTD. If LTD is random, then LTD

of year t-1 should not convey any information for the future LTD and thus it is

equally likely for a stock to belong in one of the five LTD quantile portfolios in year

t regardless of its previous ranking. This random pattern will translate to a LTD

persistence of 20% for all quintile portfolios. Figures 3a and 3b plot the persistence

of the copula-based LTD coefficient for the US and non-US sample, respectively.

The persistence of the 5th quintile portfolio is evident since its value is always

above 20% for both US and non-US firms. Its persistence, however, is extremely
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high for international stocks and it is almost always above 30% with a peak of

45% around the Global Financial Crisis. This high persistence is evidence of the

importance of the US stock market for the rest of the world and a confirmation of

the findings of Nguyen and Lambe (2021). In other words, we find that firms with

the highest LTD exhibit the highest persistence. This implies that there exists

a set of firms with certain non-transient characteristics that contribute to their

systematically high left tail dependence. On the contrary, the same pattern does

not emerge for the 1st quintile portfolio of the lowest LTD stocks.

Finally, we report the correlation of left tail dependence with all other variables

in our dataset in Table 3. The ranking order of the individual variables is indicative

of the random forest regression results as we see below: i) the R-square integration

measure (R2) and Coskewness have the highest absolute correlation with left tail

dependence and ii)Ownership variables dominate all others. Interestingly, firm size

(log me) is more correlated (31%) with LTD in the US sample whereas this positive

relationship is weakened (log cap has a correlation of 15%) in the international

sample of stocks. The World Uncertainty Index (WUI) has by far the strongest

linear relation with LTD among all other Macro variables.

[Insert Table 3 here]

5.2. Determinants of firm-level left tail dependence

In this section, we now present the findings of our empirical analysis in terms of

the random forest regression model and the measures of variable importance that

we use to distinguish the true variables that explain firm-level left tail dependence

of US and non-US stocks.1 All individual variables are ranked in terms of the

permutation test score and the change of R2 while results are presented for variable

groups. In the permutation test, we randomly permute variable j thus breaking its

relationship with LTD. We then apply the already fitted random forest regression

model to the permuted dataset and take the difference in prediction accuracy before

and after permuting j. The sum of the permutation test scores of all variables is

standardized to equal 1. The change in R2 is the reduction in predictive R2 in

1Results for right tail dependence are qualitatively similar to those for left tail dependence
and as such we do not report them here. They are available upon request.
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the absence of a variable from the model and it is calculated by setting all values

of that variable to zero, while holding the remaining model estimates fixed. The

larger the values of the permutation test score and the change in R2 are, the more

important a variable is in explaining LTD.

As powerful as random forest regression might be as a machine learning tech-

nique, it does not generate interpretable coefficients similar to those in the con-

ventional regression framework. For that purpose, we augment the RFR analysis

with linear regression specifications in which we examine whether the effect of a

variable on tail dependence is negative or positive.

5.2.1. US results

First, we present results for the US sample. Figure 4 shows the importance of

individual variables and their groups on firm-level left tail dependence of US stocks

based on the permutation test score and the change in R2. We find that the World

Uncertainty Index (WUI) of Ahir et al. (2022) is the most important determinant

of LTD and it explains 6% of its panel variation. WUI measures the global market

uncertainty and as such it captures crisis and non-crisis periods. Thus its high im-

portance is not a surprising finding given the stylized fact that, in crisis periods,

stocks and markets tend to crash together more often than in non-crisis periods

with WUI signalling the transition between them. After WUI, Coskewness and R2

matter the most in explaining the variation of LTD with both of them contributing

slightly less than 6%. The R-Square measure of Pukthuanthong and Roll (2009)

captures the dependence of a US stock with the foreign market index in the cen-

tral part of their joint distribution which means that this central dependence also

extends to the tails. This relates to the findings of De Jonghe (2010) regarding the

strong relation between ordinary and tail betas; firms that have a large exposure

to foreign shocks in tranquil economic conditions will be more exposed to nega-

tive extreme movements during turbulent market conditions. Coskewness, on the

other hand, measures the comovement of the stock with the foreign market return

squared and as such it describes how the stock return behaves when the market

return undergoes extreme deviations. Thus a positive (negative) value of coskew-

ness implies that, when the market return deviates from its mean, stock returns

are positive (negative). If coskewness is positive (negative), then LTD (UTD) is
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weak.

The most interesting pattern that we observe in our analysis is the importance

of Ownership variables such as the number of foreign and total institutional in-

vestors (fio num and io num). They rank at the 5th and 6th place according to

their permutation test score values of 3.3%, respectively. The dominance of the

Ownership variables, however, is not limited to the number of total and foreign

investors; total and foreign institutional ownership (io and fio) as well as foreign

common ownership (fco mean) are also highly ranked explaining 2.6%, 3% and

3% of LTD variation, respectively. Only the total stock market capitalization and

the total trade over the US GDP (Mcap GDP and Trade GDP) are almost on

the same level of importance as the Ownership variables. Both Mcap GDP and

Trade GDP are important drivers of the left tail dependence of US stocks with

foreign markets with Trade GDP being a de jure factor of economic openness and

free flow of capital among countries. Finally, firm size (log me) does not turn out

to be the most influential variable for LTD since it is lagging behind the World

Uncertainty Index, R-square measure, coskewness and number of total and foreign

investors. Its permutation test score is only 3.2%. Other determinant variables

exert a much lesser influence on left tail dependence.

When we repeat our analysis with groups, we find that Market, Ownership

and Macro variables matter the most. When these groups are excluded, the ex-

planatory power of the random forest regression model is reduced by 36%, 30%

and 24%, respectively. Market variables that include the R-square, coskewness

and size (log me) explain the greatest proportion of variation in LTD in RFR fol-

lowed by Ownership variables. The dominance of institutional ownership related

characteristics highlights the power of institutions as agents of globalization who

affect prices as a result of their trading activity. Surprisingly, Macro variables are

behind the previous two categories meaning that, even though market conditions

matter, firm-specific characteristics play a more important role for the level of tail

dependence in US.

Finally, we complement our random forest regression analysis with linear re-

gressions using the top 15 most important variables as ranked by the permutation

test score. The left panel of Table 4 reports the OLS coefficients for the US sam-

ple. The signs are intuitive. More specifically, WUI and R2 have a positive and
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significant effect on LTD: a 1% increase of WUI and R2 increases left tail depen-

dence by 1.5% and 0.23%, respectively. Coskewness, on the other hand, affects

LTD negatively since, by definition, a positive value of coskewness implies a weak

left tail dependence and this fact is reflected in the negative coefficient. All the

Ownership variables (io num, fio, fco mean, io) are positively correlated with LTD

but the magnitude of their coefficients is not large. As far as the role of firm size

(log me) is concerned, a 1% annual return is related to a 0.5% increase in the

probability that the stock will decline in price if foreign markets also experience a

decline in the far left tail.

5.2.2. non-US results

Second, we present results for the non-US sample. Figure 5 shows the impor-

tance of individual variables and their groups on LTD of non-US stocks. Unlike

in the case of the US, there are differences in the ranking of variables and groups

depending on whether the permutation test or the change in R2 is used. How-

ever, despite these differences, there are some common patterns: i) the R-Square

integration measure, Coskewness, World Uncertainty Index and World Trade Un-

certainty Index are the top 4 most important variables and ii) Ownership variables

are dominating places 5 to 9 based on the permutation test with their dominance

weakening according to change in R2 values. Interestingly, left tail dependence

does not depend at all on firm size (log cap) in the global dataset in contrast to

the US sample where size (log me) ranks very high. The remaining determinant

variables have little impact on LTD.

When we focus on groups, we find that Market variables with the inclusion of

the R-square and Coskewness are the most important drivers of left tail dependence

in the international sample. The difference of the value of the permutation test

score for Profitability, Value and Ownership groups is very small (17%, 16.8% and

16% respectively) and thus we use the change in R2 results for inference. In the

latter case, Ownership variables clearly dominate Profitability and Value variables

as it was the case with US firms. Thus, Market, Ownership and Profitability

variables drive left tail dependence outside of the US with corresponding reductions

in the explanatory power of the model of 40%, 24%, and 23%. In contrast to

the US sample, Macro variables are unimportant as a category in the non-US
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universe. Even though WUI and WTUI matter, the country-specific total stock

market capitalization and trade over GDP variables exert no effect on the LTD of

international firms with respect to the US market.

The right panel of Table 4 reports the OLS coefficients of a regression of LTD

on the 15 most important variables selected by RFR using the permutation test

score for non-US stocks. The OLS results resemble those of the US: WUI and

R2 have a positive and significant effect on LTD with coefficients 0.7% and 0.5%,

respectively. The relation between Coskewness and LTD is weakened in the inter-

national sample with a -15% coefficient compared to -20% in the US. The same

weak but positive relation pattern holds for the Ownership variables (fio, fco mean,

io num, io, io hhi). Firm size (log cap) still exerts a positive but weaker effect on

LTD for international firms: a 1% annual return is translated to a 0.1% increase

on left tail dependence in contrast to the 0.5% increase in the US.

6. Robustness checks

We discuss several robustness checks. Our results are robust when we con-

trol for small-cap stocks, financial firms or the random seed of the random forest

regression model.

6.1. The effect of micro-cap stocks

The higher value-weighted average levels of left tail dependence of Figure 1

suggest that larger firms are more exposed to foreign shocks than the average firm

represented by the equal-weighted mean of LTD. This is supportive of our results

being linked with firm size. Even though micro-cap stocks comprise the majority

of the equity universe, their economic significance is trivial. In this section, we

explore their effect on our analysis by excluding them. We follow the definition

of the most recent papers on asset pricing such as those of Hou et al. (2020) and

Jensen et al. (2022) and we consider a stock to be a micro-cap when it belongs to

the bottom 20% quantile of all stocks.

For the US sample, we sort stocks into micro-, and non micro-cap portfolios

using the 20% NYSE breakpoint. We repeat the sorting procedure for the non-US

sample using all international stocks. In both cases, the size quantiles for each

June of year t are defined using all stocks in our original sample with available
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market cap data at June of year t. In other words, their size rankings are not

determined by the subsetted sample that we use in our analysis.

Figure 6 shows the random forest regression results for the US and non-US

stock universe when we exclude small cap stocks from our analysis. The findings

of Section 5.2 remain unchanged and thus our results are not driven by firm size.

6.2. The effect of financial firms

Our baseline analysis includes all publicly traded firms, regardless of whether

they are financial or not. Thus it is natural to examine how our results change

when we exclude financial firms (SIC=6000-6999). Figure 7 plots the variable

importance when financial firms are excluded from the random forest regression

analysis with results remaining largely unchanged for both the US and non-US

sample.

6.3. Effect of the random seed in random forest regression

Every time we build a Tree for our random forest, we use randomly only 2/3

of the full sample. This randomness is controlled by the state of the random seed

and in this section we assess its effect on the random forest regression algorithm

results. For the baseline results of Section 5.2, we set the random state to 1. Then

we proceed to set the random state to 3, 5, 7 and 11 and run the RFR model

again. For brevity we report results only for the random seed=3 case in Figure 8

but results remain largely unchanged for the other cases and are available upon

request.

7. Conclusion

Even though firm-level tail dependence has been studied extensively in the

banking literature, it has not been fully explored for firms outside of banks and

financial institutions. In this paper, we provide insights on what determines left

tail dependence between a local firm and its corresponding foreign market index

regardless of the state of the local market. To that end, we first estimate a measure

of firm-level tail dependence using the copula based methodology of Chabi-Yo

et al. (2018) in a representative international sample of stocks for the period

2000-2019. We then combine that measure with a list of firm characteristics and
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macroeconomic variables to uncover the factors that characterize firm-level left tail

dependence. We employ the random forest regression model to distinguish between

variables that matter in explaining the panel variation of left tail dependence and

those that do not in both a US and non-US sample.

We rank the variables in terms of importance using the permutation test and

the change in R2. More specifically, we find that the World Uncertainty Index

and World Trade Uncertainty Index of Ahir et al. (2022) along with the R-square

measure of Pukthuanthong and Roll (2009) and the coskewness of local stocks

with respect to their corresponding foreign market index are the most important

determinants of left tail dependence for US and non-US stocks. Interestingly,

Ownership variables such as the number of total and foreign institutional owners

as well as the total and foreign institutional ownership dominate all other variables.

The importance of Ownership is observed inside and outside of US and it highlights

the power of institutions as agents of globalization to the extent that they trade

internationally and contribute to the increased exposure of local firms to foreign

shocks in the left tail of their joint distribution. When we categorize variables into

groups, we find that Market, Ownership and Macro (Profitability) groups are the

largest drivers of left tail dependence in the US (non-US) sample.

Our results suggest that market conditions as well as the integration of a firm

with foreign markets and the activity of institutional investors are the most impor-

tant drivers of left-tail dependence. Thus, we provide insights on the determinants

of tail dependence between local stocks and foreign markets that investors can

exploit to make better evaluations on their stock portfolio’s sensitivity to foreign

shocks.

Even though the effect of the market conditions is not new (Forbes and

Rigobon, 2002), we document how the dependence structure between local firms

and foreign markets changes in crisis periods using copulas. The fact that high

integration levels are positively correlated with high tail dependence levels, implies

that the dependence in the central part of the joint distribution extends naturally

to the tails and specifically to the left tail. The rise of the institutional investors in

global markets contributes to the increase of the firm-level tail dependence high-

lighting once more their role in the landscape of the modern financial world. Thus,

through a fuller understanding of the determinants of tail dependence between lo-

22



cal stocks and foreign markets, investors can make better ex-ante evaluations on

their local equity portfolio’s sensitivity to foreign shocks.
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Appendices

A. Random forest regression algorithm

We use the Pedregosa et al. (2011) package to run random forest regressions.

The RFR algorithm is described below:2

1. Draw a bootstrap sample of size max samples from the training data X. We

choose max samples = 2/3 meaning that we randomly select only 2/3 of

our original dataset to start building each Tree b.

2. Grow a random-forest tree T (X,Θb) to the bootstrapped data, by re-

cursively repeating the following steps for each node of the tree, until the

maximum depth (max depth) is reached. The maximum depth is reached

when the samples of the final node is less than min sample split = 10 or

either of the sub-samples left the split is less than min samples leaf = 5.

(a) Select max features variables at random from the K variables. We

follow the convention of Geurts et al. (2006) and setmax features = K

which in our case is 36.

(b) Pick the best variable/split-point among the K candidate variables. For

the kth explanatory variable, we find the optimal splitting point s such

that

min
s

[MSE(y|xk < s) +MSE(y|xk ≥ s)] (A.1)

where MSE(.) denotes the mean squared error of a linear regression

of y on X (criterion = “squared error”). At each node of the decision

tree, the variable xk and the corresponding splitting point s that yield

the lowest MSE are chosen.

(c) Split the node into two daughter nodes.

2The notation of the RandomForestRegressor class of the scikit-learn package is used.
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(d) Once the maximum depth of the Tree has been reached, the fitted value

ŷ is the average value of Y in the final node, ŷ = fb(X) = T (X,Θb)

3. Steps 1 and 2 creates the Tree T (X,Θb) where Θb contains the information of

all the Tree parameters used. Repeating those steps for b = 1, . . . , B results

in the ensemble {T (X,Θb)}Bb=1. A prediction at a new point x in a regression

setting is just

ŷ = frf (x) =
1

B

B∑
b=1

T (x,Θb) (A.2)

The random state of the RFR algorithm has been set to 1 (random state=1).
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B. Definition of variable importance measures

B.1. Permutation test

Once our model is trained, we can estimate the importance score for each of the

explanatory variables using the permutation test of Breiman (2001). The premise

of the test is that the fitted values show the largest sensitivity to changes in the

most important variables. Thus our score is the difference in prediction accuracy

before and after permuting the explanatory variables. This approach is known as

“Mean Decrease Accuracy” method.

If f̂ is our trained model, X our variable matrix, y the target vector and

L = L(y, f̂) is our prediction accuracy measure, then we can estimate the error

of the original model as eorig = L(y, f̂(X)). Our choice for L is the mean squared

error, L(y, f̂(X)) = E
[
y − f̂(X)

]2
. For each variable j, we generate matrixXperm,j

by permuting all data points of j. This permutation breaks the relation between

variable j and the true outcome y. We then estimate the prediction error eperm,j =

L(y, f̂(Xperm,j)) of the permuted model and repeat the process K times generating

K corrupted datasetsXperm,j,k. Finally, we calculate the variable importance as the

difference V Ij =
1
K

∑K
k=1 (eperm,j,k − eorig) for K=10. The scores are standardized

so that they sum up to one and all variables are ranked based on that score. The

higher the value of V Ij, the more important that variable must be in explaining

y since the prediction error increases. The permutation test is generic and as

such it is applicable to both GETS and RFR models. It is our primary variable

importance measure in RFR modelling.

B.2. Change in R2

We measure the importance of variable j by setting its value to zero and com-

pute the difference between the R2 of the original data matrix and the R2 of the

one with zeros in column j keeping everything else fixed. The larger the change in

R2 is, the more important variable j must be since the fit of the model worsens.

When we apply this method for variable group g, we set to zero all variables j that

belong to g, j ∈ g, to zero and compute the difference in R2 again. This method

popularized by Gu et al. (2020) is also generic and applicable to both GETS and

RFR models and it is used as a complementary measure to the overall contribution

and permutation test.

28



T
a
b
le

1
.
P
o
te
n
ti
a
l
d
et
er
m
in
a
n
ts

o
f
fi
rm

-l
ev
el

ta
il
d
ep

en
d
en

ce

M
a
rk

e
t

P
ro

fi
ta
b
il
it
y

1
il
li
q
u
id
it
y

A
m
ih
u
d
(2
00
2)
’s
il
li
q
u
id
it
y
m
ea
su
re

20
p
ro
f

G
ro
ss

p
ro
fi
ta
b
il
it
y
ov
er

b
o
ok

eq
u
it
y

2
R
2

P
u
k
th
u
an

th
on

g
an

d
R
ol
l
(2
00
9)
’s
in
te
gr
at
io
n
m
ea
su
re

21
ro
c

S
iz
e
+

lo
n
gt
er
m

d
eb
t
-
to
ta
l
as
se
ts

to
ca
sh

3
C
os
ke
w
n
es
s

C
os
ke
w
n
es
s
of

lo
ca
l
st
o
ck

w
it
h
fo
re
ig
n
m
ar
ke
t
in
d
ex

22
ro
e

In
co
m
e
b
ef
or
e
ex
tr
ao
rd
in
ar
y
it
em

s
to

la
gg
ed

b
o
ok

eq
u
it
y

4
lo
g
m
e/
lo
g
ca
p

L
og

of
m
ar
ke
t
ca
p
it
al
iz
at
io
n

23
ro
ic

R
et
u
rn

on
in
ve
st
ed

ca
p
it
al

5
m
om

6m
R
et
u
rn

fr
om

6
to

2
m
on

th
s
b
ef
or
e
en
d
of

J
u
n
e

24
s2
c

S
al
es

to
ca
sh

6
to
ta
l
vo
l

T
ot
al

d
ai
ly

re
tu
rn

vo
la
ti
li
ty

7
m
ax

M
ax

im
u
m

d
ai
ly

re
tu
rn

in
a
ye
ar

V
a
lu
e

8
sk
ew

n
es
s

S
ke
w
n
es
s
of

d
ai
ly

st
o
ck

re
tu
rn
s

25
a2
m
e

T
ot
al

as
se
ts

to
m
ar
ke
t
ca
p

9
va
r9
0

V
al
u
e-
at
-r
is
k
at

th
e
90
%

le
ve
l

26
b
tm

B
o
ok

to
m
ar
ke
t
ra
ti
o

10
es
90

E
x
p
ec
te
d
sh
or
tf
al
l
at

th
e
90
%

le
ve
l

27
c

C
as
h
to

to
ta
l
as
se
ts

28
c2
d

C
as
h
fl
ow

to
to
ta
l
li
ab

il
it
ie
s

O
w
n
e
rs
h
ip

29
d
S
o

L
og

ch
an

ge
in

sp
li
t-
ad

ju
st
ed

sh
ar
es

ou
ts
ta
n
d
in
g

11
io

T
ot
al

in
st
it
u
ti
on

al
ow

n
er
sh
ip

30
d
eb
t2
p

T
ot
al

d
eb
t
to

m
ar
ke
t
ca
p

12
fc
o
m
ea
n

A
ve
ra
ge

of
A
n
to
n
an

d
P
ol
k
(2
01
4)
’s
F
C
A
P

(i
,j
)
ov
er

fo
re
ig
n
st
o
ck
s
j

31
e2
p

In
co
m
e
b
ef
or
e
ex
tr
ao
rd
in
ar
y
it
em

s
to

m
ar
ke
t
ca
p

13
fi
o

F
or
ei
gn

in
st
it
u
ti
on

al
ow

n
er
sh
ip

32
sa
le
s
g

S
al
es

gr
ow

th
14

fi
o
n
u
m

N
u
m
b
er

of
fo
re
ig
n
in
st
it
u
ti
on

al
ow

n
er
s

15
io

h
h
i

H
er
fi
n
d
ah

l–
H
ir
sc
h
m
an

in
d
ex

of
io

M
a
cr
o

16
io

n
u
m

N
u
m
b
er

of
to
ta
l
in
st
it
u
ti
on

al
ow

n
er
s

33
W

U
I

W
or
ld

u
n
ce
rt
ai
n
ty

in
d
ex

of
A
h
ir
et

al
.
(2
02
2)

34
W

T
U
I

W
or
ld

tr
ad

e
u
n
ce
rt
ai
n
ty

in
d
ex

of
A
h
ir
et

al
.
(2
02
2)

In
v
e
st
m
e
n
t

35
M
ca
p
G
D
P

T
ot
al

m
ar
ke
t
ca
p
it
al
iz
at
io
n
of

lo
ca
l
m
ar
ke
t
ov
er

G
D
P

17
in
v

P
er
ce
n
ta
ge

ch
an

ge
in

to
ta
l
as
se
ts

36
T
ra
d
e
G
D
P

T
h
e
su
m

of
ex
p
or
ts

an
d
im

p
or
ts

ov
er

G
D
P

18
d
ce
q

P
er
ce
n
ta
ge

ch
an

ge
in

b
o
ok

eq
u
it
y

19
iv
c

C
h
an

ge
in

in
ve
n
to
ry

ov
er

av
er
ag
e
to
ta
l
as
se
ts

N
ot
es
:
T
h
e
ta
b
le

li
st
s
th
e
va
ri
ab

le
s
w
e
co
n
si
d
er

as
p
ot
en
ti
al

d
et
er
m
in
an

ts
of

fi
rm

-l
ev
el

ta
il
d
ep

en
d
en
ce

in
ou

r
an

al
y
si
s
b
y
ca
te
go
ry
.
V
ar
ia
b
le
s
ar
e
d
efi
n
ed

an
n
u
al
ly

fo
r
ea
ch

J
u
n
e.

W
e
u
se

b
al
an

ce
-s
h
ee
t
d
at
a
fr
om

th
e
fi
sc
al

ye
ar

en
d
in
g
in

ye
ar

t-
1
fo
r
J
u
n
e
of

ye
ar

t
as

p
er

F
am

a
an

d
F
re
n
ch

(2
01
5)

co
n
ve
n
ti
on

.
O
n
ly

fo
r
F
ac
ts
et

d
at
a,

w
e
u
se

in
fo
rm

at
io
n

ab
ou

t
in
st
it
u
ti
on

al
h
ol
d
in
gs

fo
r
J
u
n
e
of

ye
ar

t
fr
om

th
e
p
as
t
q
u
ar
te
r
th
at

en
d
s
in

M
ar
ch

of
ye
ar

t.
W

U
I
an

d
W

T
U
I
ar
e
so
u
rc
ed

fr
om

h
t
t
p
s
:
/
/
w
o
r
l
d
u
n
c
e
r
t
a
i
n
t
y
i
n
d
e
x
.
c
o
m
/

w
h
il
e
M
ca
p
G
D
P
an

d
T
ra
d
e
G
D
P
fr
om

th
e
W
or
ld

B
an

k
D
ev
el
op

m
en
t
In
d
ic
at
or
s
w
eb
si
te

(w
it
h
th
e
ex
ce
p
ti
on

of
T
ai
w
an

).

29

https://worlduncertaintyindex.com/


Table 2. Summary statistics of firm-level tail dependence for the US and non-US sample

US sample

LTD UTD

Date Firms Mean St.Dev. 25% Median 75% Mean St.Dev. 25% Median 75%

2000 3710 4.55 5.52 0.00 2.22 7.83 2.61 3.79 0.00 0.30 4.43
2001 3636 4.65 5.75 0.00 2.15 7.84 5.27 6.82 0.00 2.28 8.84
2002 3518 4.34 5.17 0.00 2.31 7.58 5.87 6.37 0.03 4.16 9.47
2003 3340 9.13 7.96 1.29 8.05 14.77 5.51 6.31 0.00 3.47 9.42
2004 3276 6.80 7.09 0.18 4.81 11.21 3.20 4.65 0.00 0.02 5.80
2005 3213 2.97 4.31 0.00 0.18 5.19 3.07 4.50 0.00 0.21 5.24
2006 3157 3.56 5.29 0.00 0.15 6.01 6.69 6.74 0.00 5.18 11.49
2007 2985 9.79 8.02 1.91 9.31 15.63 4.87 5.99 0.00 2.03 8.64
2008 2889 6.73 7.15 0.01 4.95 11.13 5.48 6.07 0.00 3.58 9.59
2009 2652 17.13 10.36 8.72 17.76 25.17 11.05 8.11 4.13 10.77 17.15
2010 2660 14.01 10.88 4.70 12.76 22.01 5.35 6.64 0.00 2.44 9.29
2011 2555 8.20 8.09 0.17 6.56 13.49 8.73 8.92 0.00 6.55 14.65
2012 2482 15.95 11.77 6.27 14.21 24.36 8.08 9.26 0.00 4.85 13.49
2013 2400 7.12 7.66 0.01 4.81 11.77 7.99 8.05 0.00 6.13 13.30
2014 2330 6.12 6.63 0.00 4.01 10.48 5.18 6.20 0.00 2.77 8.89
2015 2268 8.79 8.05 0.97 7.66 14.25 5.32 6.09 0.00 3.12 9.68
2016 2303 12.94 10.67 3.47 11.45 20.67 4.92 5.63 0.00 2.78 8.77
2017 2103 5.46 6.00 0.00 3.78 9.51 5.86 6.29 0.01 3.99 9.97
2018 2130 10.82 9.20 1.85 9.75 17.26 2.80 4.01 0.00 0.24 5.00
2019 2137 8.23 7.81 0.56 6.64 13.24 7.78 7.46 0.14 6.36 12.86

non-US sample

LTD UTD

Date Firms Mean St.Dev. 25% Median 75% Mean St.Dev. 25% Median 75%

2000 1029 3.13 4.86 0.00 0.32 4.89 2.79 4.24 0.00 0.22 4.45
2001 2099 4.22 5.95 0.00 1.17 6.87 3.51 5.21 0.00 0.20 5.89
2002 2425 4.34 4.90 0.00 2.71 7.30 3.44 5.26 0.00 0.43 5.48
2003 2534 4.66 5.79 0.00 2.21 7.79 4.30 5.78 0.00 1.76 6.87
2004 3240 5.71 6.04 0.62 4.07 8.95 1.83 3.35 0.00 0.00 2.56
2005 3124 2.90 4.23 0.00 0.08 5.07 2.23 3.86 0.00 0.00 3.42
2006 4219 2.82 4.46 0.00 0.24 4.31 2.34 3.97 0.00 0.00 3.48
2007 5149 5.72 6.16 0.02 4.14 9.47 2.93 4.37 0.00 0.03 5.03
2008 5787 3.46 5.55 0.00 0.12 5.44 2.73 4.32 0.00 0.01 4.50
2009 5348 8.78 9.45 0.32 6.06 13.90 5.43 5.94 0.00 3.81 9.02
2010 5848 6.75 7.51 0.18 4.38 10.84 3.55 5.75 0.00 0.00 5.39
2011 6099 3.84 5.70 0.00 0.55 6.17 4.23 6.46 0.00 0.50 6.80
2012 6473 9.96 9.49 2.20 7.64 14.74 5.19 7.14 0.00 1.66 8.45
2013 6687 4.72 5.49 0.00 2.74 8.00 2.57 4.73 0.00 0.00 3.61
2014 7364 2.85 4.62 0.00 0.03 4.41 2.85 4.17 0.00 0.24 4.84
2015 7771 4.60 5.50 0.00 2.83 7.43 2.90 4.82 0.00 0.00 4.54
2016 7856 9.93 7.25 4.44 9.24 14.24 4.70 5.27 0.00 2.98 7.77
2017 8299 2.88 4.56 0.00 0.08 4.61 2.41 3.75 0.00 0.02 3.99
2018 8393 7.25 6.77 0.66 5.91 12.00 3.00 4.54 0.00 0.02 5.16
2019 9147 5.53 6.37 0.00 3.27 9.56 5.88 6.26 0.00 4.37 10.04

Notes: The table reports the left and right tail dependence coefficient (LTD and UTD respectively) of
the Clayton-Gaussian-Rotated Clayton copula between a stock and its corresponding foreign market
index for the US and non-US sample. The copulas are estimated with daily returns from July of
year t-1 to June of year t. The corresponding foreign market index is the Fama-French Developed
market index excluding the US and the CRSP value-weighted index for the US and non-US stocks,
respectively. We report the mean, standard deviation and 25%, 50% (median) and 75% quantile of
the distribution of LTD and UTD for each period.



Table 3. Correlations of firm-level left tail dependence

US sample non-US sample

Variable Correlation Variable Correlation Variable Correlation Variable Correlation

R2 0.46 illiquidity -0.04 R2 0.47 btm -0.02
Coskewness -0.35 Mom6m 0.04 Coskewness -0.37 cto -0.02
log me 0.31 dSo -0.04 io num 0.22 sat -0.01
fco mean 0.26 e2p 0.03 UTD 0.22 Mcap GDP 0.01
io 0.25 c2d 0.03 fio num 0.22 roe 0.01
io num 0.25 debt2p -0.02 fio 0.21 ivc -0.01
WUI 0.25 io hhi 0.02 fco mean 0.18 debt2p 0.01
UTD 0.24 sat -0.02 io 0.18 inv -0.01
fio num 0.24 cto -0.02 log cap 0.15 c2d 0.01
fio 0.20 roe 0.02 WUI 0.14 WTUI 0.01
Trade GDP 0.13 WTUI 0.01 var90 0.10 e2p 0.01
be 0.12 c -0.01 be 0.09 roc 0.01
operpro 0.11 s2c -0.01 es90 0.09 sales g 0.00
Mcap GDP -0.10 op 0.01 operpro 0.08 op 0.00
roic 0.10 roc -0.01 Trade GDP 0.07 s2c 0.00
skewness -0.08 ivc 0.00 c -0.06 illiquidity 0.00
max -0.08 ipm 0.00 total vol 0.06 dSo 0.00
total vol -0.07 prof 0.00 roic 0.04 prof 0.00
btm -0.07 dceq 0.00 Mom6m 0.04 dceq 0.00
es90 -0.06 inv 0.00 io hhi 0.04 a2me 0.00
var90 -0.05 sales g 0.00 skewness -0.03 ipm 0.00
a2me -0.04 max 0.02

Notes: The table reports the correlation of the left tail dependence coefficient of the Clayton-Gaussian-Rotated
Clayton copula between a stock and its corresponding foreign market index with all other variables in our sample.
The copulas are estimated with daily returns from July of year t-1 to June of year t. The corresponding foreign
market index is the Fama-French Developed market index excluding the US and the CRSP value-weighted
index for the US and non-US stocks, respectively. Variables are sorted in descending order based on the
absolute magnitude of their correlation with left tail depedence.
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Table 4. OLS regression coefficients of left tail dependence

US sample non-US sample

Variable Coefficient Permutation test Variable Coefficient Permutation test

WUI 1.481*** 6.032 R2 0.545*** 5.341
Coskewness -20.378*** 6.021 Coskewness -14.754*** 4.420
R2 0.234*** 5.870 WUI 0.683*** 2.825
Mcap GDP -0.020*** 4.338 WTUI -7.722*** 2.100
io num 0.001*** 3.456 fio 0.026*** 1.970
log me 0.461*** 3.299 fco mean 0.03 1.944
WTUI -36.919*** 3.224 io num 0 1.862
Trade GDP -0.018** 3.178 io 0.003 1.812
illiquidity -0.033* 3.161 max 1.011 1.739
fio 0.048*** 3.106 roe 0.000*** 1.734
fco mean 0.208*** 3.021 debt2p 0 1.667
io 0.012*** 2.703 io hhi -1.813** 1.644
es90 0.428*** 2.468 log cap 0.105*** 1.614
var90 -0.237*** 2.429 total vol 0.023*** 1.610

Obs 55,744 Obs 108,891
r-squared 0.651 r-squared 0.594

Notes: The table reports the OLS coefficients of the left tail dependence coefficient of the
Clayton-Gaussian-Rotated Clayton copula between a stock and its corresponding foreign market
index against the 15 most important variables as selected by random forest regression with the
permutation test score. The copulas are estimated with daily returns from July of year t-1 to
June of year t. fio num is dropped from the OLS regressions due to its very high correlation of
97% with io num. Errors are robust and *, ** and *** correspond to significance at the 10%,
5% and 1% level, respectively.
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(a) EW and VW average LTD and UTD for US stocks (b) EW and VW average LTD and UTD for non-US stocks

Figure 1. Firm-level tail dependence means

Notes: Figures 1a and 1b shows the equal- and value-weighted (EW and VW) average
value of the LTD and UTD for all US and non-US stocks in our sample. The LTD and
UTD measures are estimated annually from the daily returns of a stock and its corre-
sponding foreign market index using the fitted Clayton-Gauss-Rotated Clayton copula.
Gray shaded areas correspond to NBER recession periods for US and for Developed
Markets excluding the US in the US and non-US sample, respectively.
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(a) EW average copula weights for US stocks (b) EW average copula weights for non-US stocks

Figure 2. Firm-level dependence structure

Notes: Figures 2a and 2b show the equal-weighted average weights that are assigned to
the Clayton, Gaussian and Rotated Clayton (rClayton) copulas in the estimation pro-
cess. The weights, wClayton, wGaussian, wrClayton, are representative of the dependence
structure of the stock and the corresponding foreign market index. When wClayton

(wrClayton) increases, the stock and the index exhibit a dependence structure that is left
(right) tail dominant. On the contrary, an increase of wGaussian indicates a structure of
weaker left and right tail dependence. Gray shaded areas correspond to NBER reces-
sion periods for US and for Developed Markets excluding the US in the US and non-US
sample, respectively.
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(a) Persistence of LTD for US stocks (b) Persistence of LTD for non-US stocks

Figure 3. Year-to-year persistence of left tail dependence

Notes: Figures 3a and 3b plot the persistence of LTD for US and non-US stocks. Per-
sistence is measured as the relative frequency at which a stock is sorted into a LTD
quintile portfolio i in year t given that it was in same portfolio i in year t-1. The rank
1 portfolio contains the 20% stocks with the lowest LTD while rank 5 contains those
with the highest LTD. For example, a value of 43% for the rank 5 portfolio in the US in
year 2015 means that 43% of stocks that belonged to the rank 5 portfolio in year 2014
remained in it in 2015. Gray shaded areas correspond to NBER recession periods for US
and for Developed Markets excluding the US in the US and non-US sample, respectively.
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(a) Permutation test of LTD for variables (b) Change in R2 of LTD for variables

(c) Permutation test of LTD for groups (d) Change in R2 of LTD for groups

Figure 4. Importance of determinants of firm-level left tail dependence for the US sample

Notes: Figure shows the importance of individual variables and their groups as deter-
minants of firm-level left tail dependence of US stocks with their corresponding foreign
market index. Variable importance is calculated from both the permutation test and
the change in R2 of the random forest regression model. The value of the permutation
test for variable j is the average difference in prediction accuracy before and after per-
muting j in the data matrix. The sum of the permutation test scores of all variables is
normalized to equal 1. The change in R2 corresponds to the reduction in predictive R2
from setting all values of variable j to zero, while holding the remaining model estimates
fixed. The higher the permutation test score and the change of R2 are for variable j, the
more important that variable is in explaining left tail dependence.
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(a) Permutation test of LTD for variables (b) Change in R2 of LTD for variables

(c) Permutation test of LTD for groups (d) Change in R2 of LTD for groups

Figure 5. Importance of determinants of firm-level left tail dependence for the non-US sample

Notes: Figure shows the importance of individual variables and their groups as determi-
nants of firm-level left tail dependence of non-US stocks with their corresponding foreign
market index. Variable importance is calculated from both the permutation test and
the change in R2 of the random forest regression model. The value of the permutation
test for variable j is the average difference in prediction accuracy before and after per-
muting j in the data matrix. The sum of the permutation test scores of all variables is
normalized to equal 1. The change in R2 corresponds to the reduction in predictive R2
from setting all values of variable j to zero, while holding the remaining model estimates
fixed. The higher the permutation test score and the change of R2 are for variable j, the
more important that variable is in explaining left tail dependence.
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(a) Permutation test of LTD for variables in US (b) Change in R2 of LTD for variables in US

(c) Permutation test of LTD for groups in US (d) Change in R2 of LTD for groups in US

(e) Permutation test of LTD for variables in non-US (f) Change in R2 of LTD for variables in non-US

(g) Permutation test of LTD for groups in non-US (h) Change in R2 of LTD for groups in non-US

Figure 6. Importance of determinants of firm-level left tail dependence when we exclude small-
cap stocks

Notes: Figure shows the importance of individual variables and their groups as deter-
minants of firm-level left tail dependence of US and non-US stocks with their corre-
sponding foreign market index when we exclude small-cap stocks. Variable importance
is calculated from both the permutation test and the change in R2 of the random forest
regression model.
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(a) Permutation test of LTD for variables in US (b) Change in R2 of LTD for variables in US

(c) Permutation test of LTD for groups in US (d) Change in R2 of LTD for groups in US

(e) Permutation test of LTD for variables in non-US (f) Change in R2 of LTD for variables in non-US

(g) Permutation test of LTD for groups in non-US (h) Change in R2 of LTD for groups non-US

Figure 7. Importance of determinants of firm-level left tail dependence when we exclude finan-
cial firms

Notes: Figure shows the importance of individual variables and their groups as determi-
nants of firm-level left tail dependence of US and non-US stocks with their corresponding
foreign market index when we exclude financial firms. Variable importance is calculated
from both the permutation test and the change in R2 of the random forest regression
model.
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(a) Permutation test of LTD for variables in US (b) Change in R2 of LTD for variables in US

(c) Permutation test of LTD for groups in US (d) Change in R2 of LTD for groups in US

(e) Permutation test of LTD for variables in non-US (f) Change in R2 of LTD for variables in non-US

(g) Permutation test of LTD for groups in non-US (h) Change in R2 of LTD for groups in non-US

Figure 8. Importance of determinants of firm-level left tail dependence for random seed=3

Notes: Figure shows the importance of individual variables and their groups as determi-
nants of firm-level left tail dependence of US and non-US stocks with their corresponding
foreign market index when we set the random seed of the random forest regression algo-
rithm to 3. Variable importance is calculated from both the permutation test and the
change in R2 of the random forest regression model.
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